Name: \qquad Date: \qquad

Honors Chem Practice Test Unit 6

1. True or false? The equation $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$ can be interpreted by saying that 1 mol of N_{2} reacts with 3 mol of H_{2} to form 2 mol of NH_{3}.
A) True
B) False
2. True or false? A balanced chemical equation is one that has the same number of moles of molecules on each side of the equation.
A) True
B) False
3. The balanced equation $2 \mathrm{Cu}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CuO}(s)$ tells us that 5.0 mol of Cu
A) reacts with 5.0 mol of O_{2}
D) cannot react with oxygen
B) produces 5.0 mol of CuO
E) produces 10.0 mol of CuO
C) must react with 160 g of O_{2}
4. For the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

if 6.0 mol of CO_{2} are produced, how many moles of O_{2} were reacted?
A) 4.0 mol
D) 15.0 mol
B) 7.5 mol
E) none of these
C) 9.0 mol
5. True or false? A mole ratio is used to convert the moles of a starting substance to the moles of a desired substance.
A) True
B) False
6. Refer to the following equation: $4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

How many moles of ammonia will be required to produce 13.7 mol of water?
A) 5.48 mol
D) 6.85 mol
B) 13.7 mol
E) none of these
C) 9.13 mol
7. Refer to the following equation: $4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

How many molecules of NO_{2} are produced when 7.19 mol of ammonia is completely reacted?
A) 28.76
D) 331
B) 8.66×10^{24}
E) none of these
C) 4.33×10^{24}
8. How many molecules of carbon dioxide will be formed if 4.94 g of propane is burned in the following reaction?

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) 8.92×10^{24} molecules
B) 6.75×10^{22} molecules
C) 2.70×10^{23} molecules
D) 2.02×10^{23} molecules
E) 3.37×10^{23} molecules
9. Calculate the mass of water produced when 8.57 g of methane, CH_{4}, reacts with an excess of oxygen in the following unbalanced reaction.
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A) $9.62 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
B) $3.09 \times 10^{2} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
C) $19.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
D) $0.476 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
E) $1.07 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
10. Consider the reaction

$$
2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

If 12.7 g of iron(III) oxide (rust) is produced from a certain amount of iron, how many grams of oxygen are needed for this reaction?
A) 3.82 g
D) 2.54 g
B) 7.63 g
E) none of these
C) 1.70 g
11. Methane, CH_{4}, the major component of natural gas, burns in air to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. What mass of water is formed in the complete combustion of 3.39 e 3 g of CH_{4} ?
A) $1.22 \times 10^{5} \mathrm{~g}$
D) $7.61 \times 10^{3} \mathrm{~g}$
B) $3.81 \times 10^{3} \mathrm{~g}$
E) none of these
C) $1.14 \times 10^{4} \mathrm{~g}$
12. How many moles of O_{2} are required for the complete reaction of 50.6 g of $\mathrm{C}_{2} \mathrm{H}_{4}$ to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$?
A) 0.902 mol
D) 5.41 mol
B) 3.61 mol
E) none of these
C) 7.22 mol
13. For the reaction

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+4 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 3 \mathrm{NaCl}(\mathrm{aq})+\mathrm{NaClO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

how many grams of NaCl can be produced from 22.5 g of Cl_{2} and excess NaOH ?
A) 27.8 g NaCl
D) 9.27 g NaCl
B) 12.4 g NaCl
E) none of these
C) 18.5 g NaCl
14. Sodium and water react according to the equation

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

What number of moles of H_{2} will be produced when 4.0 mol Na is added to $2.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?
A) 1.4 mol
B) 5.6 mol
C) 2.0 mol
D) 2.8 mol
E) 8.0 mol
15. How many moles of SbCl_{3} is formed when 4.00 mol Sb are reacted with $4.70 \mathrm{~mol} \mathrm{Cl}_{2}$ according to the unbalanced equation
$\mathrm{Sb}+\mathrm{Cl}_{2} \rightarrow \mathrm{SbCl}_{3}$
A) $7.05 \mathrm{~mol} \mathrm{SbCl}_{3}$
B) 4.70 mol SbCl 3
C) 3.13 mol SbCl 3
D) $4.00 \mathrm{~mol} \mathrm{SbCl}_{3}$
E) Cannot be determined based on the information given.
16. Determine the mass of CO_{2} produced when 66.9 g of CaO is reacted with 50.0 g of C according to the unbalanced equation
$\mathrm{CaO}+\mathrm{C} \rightarrow \mathrm{CaC}_{2}+\mathrm{CO}_{2}$
A) $26.3 \mathrm{~g} \mathrm{CO}_{2}$
D) $36.6 \mathrm{~g} \mathrm{CO}_{2}$
B) $105 \mathrm{~g} \mathrm{CO}_{2}$
E) none of these
C) $52.5 \mathrm{~g} \mathrm{CO}_{2}$
17. When NH_{3} is prepared from $28 \mathrm{~g} \mathrm{~N}_{2}$ and excess H_{2}, the theoretical yield of NH_{3} is 34 g . When this reaction is carried out in a given experiment, only 23 g is produced. What is the percentage yield? (Ignore significant figures for this problem.)
A) 32%
B) 45%
C) 23%
D) 34%
E) 68%
18. In the reaction between CO and $\mathrm{Fe}_{3} \mathrm{O}_{4}$, the theoretical yield in an experiment is calculated to be 47.2 g Fe . When a careless chemistry student carries out the experiment, the actual yield is 34.4 g Fe . Calculate the percentage yield.
A) 72.9%
D) 36.4%
B) 27.1%
E) none of these
C) 48.6%
19. For the reaction

$$
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

if 4.78 g of S is reacted with 10.0 g of O_{2}, how many grams of SO_{3} will be produced?
A) 23.9 g
D) 11.9 g
B) 5.97 g
E) none of these
C) 16.7 g
20. For the reaction of $\mathrm{C}_{2} \mathrm{H}_{4}(g)$ with $\mathrm{O}_{2}(g)$ to form $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(g)$, what number of moles of CO_{2} can be produced by the reaction of $0.480 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}$ and $1.00 \mathrm{~mol} \mathrm{O}_{2}$?
A) 1.50 mol
D) 1.00 mol
B) 0.960 mol
E) none of these
C) 0.667 mol

Answer Key - H_Practice Test Unit 6

1. True
2. False
3. B
4. C
5. True
6. C
7. C
8. D
9. C
10. B
11. D
12. D
13. A
14. A
15. C
16. A
17. E
18. A
19. D
20. C
