Nan	ne:	Date:					
Ho	nors Chem Practice Test Unit (6					
1.	True or false? The equation $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ can be interpreted by saying that 1 mol of N_2 reacts with 3 mol of H_2 to form 2 mol of N_3 .						
	A) True	B) False					
2.	True or false? A balanced chemical equation is one that has the same number of moles of molecules on each side of the equation.						
	A) True	B) False					
3.	The balanced equation $2Cu(s) + O_2(g) \rightarrow 2CuO(s)$ tells us that 5.0 mol of Cu						
	A) reacts with $5.0 \text{ mol of } O_2$	D) cannot react with oxygen					
	B) produces 5.0 mol of CuOC) must react with 160 g of O₂	E) produces 10.0 mol of CuO					
4.	For the reaction						
	$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$						
	if 6.0 mol of CO ₂ are produced, how many moles of O ₂ were reacted?						
	A) 4.0 mol	D) 15.0 mol					
	B) 7.5 mol C) 9.0 mol	E) none of these					
5.	True or false? A mole ratio is used to convert the moles of a starting substance to the moles of a desired substance.						
	A) True	B) False					
6.	Refer to the following equation: $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$						
	How many moles of ammonia will be required to produce 13.7 mol of water?						
	A) 5.48 mol	D) 6.85 mol					
	B) 13.7 mol C) 9.13 mol	E) none of these					

7. Refer to the following equation: $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$

How many molecules of NO₂ are produced when 7.19 mol of ammonia is completely reacted?

A) 28.76

D) 331

B) 8.66×10^{24}

E) none of these

- C) 4.33×10^{24}
- 8. How many molecules of carbon dioxide will be formed if 4.94 g of propane is burned in the following reaction?

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

A) 8.92×10^{24} molecules

D) 2.02×10^{23} molecules

B) 6.75×10^{22} molecules

E) 3.37×10^{23} molecules

- C) 2.70×10^{23} molecules
- 9. Calculate the mass of water produced when 8.57 g of methane, CH₄, reacts with an excess of oxygen in the following **unbalanced** reaction.

$$CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

A) 9.62 g H₂O

D) 0.476 g H₂O

B) $3.09 \times 10^2 \text{ g H}_2\text{O}$

E) 1.07 g H₂O

- C) 19.2 g H₂O
- 10. Consider the reaction

$$2Fe(s) + 3O_2(g) \rightarrow Fe_2O_3(s)$$

If 12.7 g of iron(III) oxide (rust) is produced from a certain amount of iron, how many grams of oxygen are needed for this reaction?

A) 3.82 g

D) 2.54 g

B) 7.63 g

E) none of these

- C) 1.70 g
- 11. Methane, CH₄, the major component of natural gas, burns in air to form CO₂ and H₂O. What mass of water is formed in the complete combustion of 3.39e3 g of CH₄?
 - A) 1.22×10^5 g

D) 7.61×10^3 g

B) 3.81×10^3 g

E) none of these

C) $1.14 \times 10^4 \,\mathrm{g}$

12.	How many moles of O ₂ are required for the complete reaction of 50.6 g of C ₂ H ₄ to form						
	CO ₂ and H ₂ O?						
	A) 0.902 mol	D)	5.41 mol				
	B) 3.61 mol	E)	none of these				
	C) 7.22 mol						
13.	For the reaction						
	$2Cl_2(g) + 4NaOH(aq) \rightarrow 3NaCl(aq) + NaClO_2(aq) + 2H_2O(1)$						
	how many grams of NaCl can be produced	d from 2	22.5 g of Cl ₂ and exce	ss NaOH?			
	A) 27.8 g NaCl	D)	9.27 g NaCl				
	B) 12.4 g NaCl	E)	none of these				
	C) 18.5 g NaCl						
14.	Sodium and water react according to the equation						
	$2Na(s) + 2H_2O(1) \rightarrow 2NaOH(aq) + H_2(g)$						
	What number of moles of H ₂ will be produced when 4.0 mol Na is added to 2.8 mol H ₂ O?						
	- *	2.0 mol	D) 2.8 mol	E) 8.0 mol			
15.	How many moles of SbCl ₃ is formed when 4.00 mol Sb are reacted with 4.70 mol Cl ₂						
	according to the unbalanced equation						
	$Sb + Cl_2 \rightarrow SbCl_3$						
	A) 7.05 mol SbCl ₃						
	B) 4.70 mol SbCl ₃						
	C) 3.13 mol SbCl ₃						
	D) 4.00 mol SbCl ₃						
	E) Cannot be determined based on the information given.						
16.	Determine the mass of CO ₂ produced when 66.9 g of CaO is reacted with 50.0 g of C						
	according to the unbalanced equation						
	$CaO + C \rightarrow CaC_2 + CO_2$						
	A) 26.3 g CO ₂	D)	36.6 g CO ₂				
	B) 105 g CO ₂	E)	none of these				
	C) 52.5 g CO ₂						

17.	When NH ₃ is prepared from 28 g N ₂ and excess H ₂ , the theoretical yield of NH ₃ is 34 g. When this reaction is carried out in a given experiment, only 23 g is produced. What is the percentage yield? (Ignore significant figures for this problem.)								
	A) 32%	B) 45%	C) 23%	D) 34%	6 E) 68	%			
18.	In the reaction ber to be 47.2 g Fe. W yield is 34.4 g Fe. A) 72.9% B) 27.1% C) 48.6%	When a careless	chemistry student percentage yield. D)	-	he experiment, th				
19.	For the reaction $2S(s) + 3O_2(g) \rightarrow$								
	if 4.78 g of S is reacted with 10.0 g of O ₂ , how many grams of SO ₃ will be produced?								
	A) 23.9 g			11.9 g	J				
	B) 5.97 g C) 16.7 g		E) 1	none of these	2				
20.	For the reaction of $C_2H_4(g)$ with $O_2(g)$ to form $CO_2(g)$ and $H_2O(g)$, what number of moles of CO_2 can be produced by the reaction of 0.480 mol C_2H_4 and 1.00 mol O_2 ?								
	A) 1.50 mol	raded of the is		1.00 mol	. 1.00 mor 0 ₂ .				
	B) 0.960 mol C) 0.667 mol		,	none of these	2				

Answer Key - H_Practice Test Unit 6

- 1. True
- 2. False
- 3. B
- 4. C
- 5. True
- 6. C
- 7. C
- 8. D
- 9. C
- 10. B
- 11. D
- 12. D
- 13. A
- 14. A
- 15. C
- 16. A
- 17. E
- 18. A
- 19. D
- 20. C