| | 1. | All of the following | ng are clues that | a chemical reac | tion has tal | ken place ex | cept | | | |--|----|---|-------------------|--------------------------|--------------|---------------|------|----|--| | | | A) A color change | _ | | D) Bubbl | _ | • | | | | | | B) A solid forms | | | / | ne occurs. | | | | | | | C) The reactant i | | | , | | | | | | | | | | | | | | | | | | 2. | Which of the following statements about chemical reactions is false ? | | | | | | | | | | | A) In balancing a chemical equation, all subscripts must be conserved. | | | | | | | | | | | B) When one coefficient is doubled, the rest of the coefficients in the balanced equation must also be doubled.C) The subscripts in a balanced equation tell us the number of atoms in a molecule.D) An individual coefficient in a balanced equation is meaningless. | E) The phases in a chemical reaction tell us the nature of the reactants and products. | | | | | | | | | | 3. | Balance the following equation in standard form and determine the sum of the coefficients. | | | | | | | | | | ٥. | $FeO(s) + O_2(g)$ | | | | | | | | | | | A) 3 | B) 4 | C) 6 | , | D) 7 | E) | 14 | | | | | , | , | , | | , | , | | | | | 4. | Increasing the concentration of a reactant will increase the speed of a reaction. | | | | | | | | | | | A) True | | | B) False | | | | | | | 5 | Lowering the tem | naratura will inc | erassa tha snaad | of a reactiv | on | | | | | | ٥. | A) True | perature will inc | rease the speed | B) False | 011. | | | | | | | A) True | | | D) Taise | | | | | | | 6. | . A catalyst is used to speed up a reaction. | | | | | | | | | | | A) True | _ | | B) False | | | | | | | | | | | | | | | | | | 7. | Grinding a reactant into a powder is one way to slow down a reaction. | | | | | | | | | | | A) True | | | B) False | | | | | | | Q | In a precipitation | reaction the ior | ns that do not fo | orm the nre | ecinitate | | | | | | 0. | 3. In a precipitation reaction, the ions that do not form the precipitate A) evaporate | | | | | | | | | | | B) are cations only | | | | | | | | | | | C) form a second insoluble compound in the solution | | | | | | | | | | | D) are left dissolved in the solution | | | | | | | | | | | E) none of these | | OII | | | | | | | | | 2) 110110 01 111000 | | | | | | | | | | 9. | A substance that, when dissolved in water, produces a solution that conducts electric current very | | | | | | | | | | | efficiently is calle | d | | | | | | | | | | A) a strong electr | rolyte | | D) an ele | ctrical solut | e | | | | | | B) a weak electro | olyte | | E) none of | of these | | | | | | | C) a strong ion | | | | | | | | **Practice Test - Unit 3** | | 10. | An aqueous solution of ammonium sulfate is allowed to react with an aqueous solution of lead(II) nitrate. | | | | | | |---------|-------|--|--|--|--|--|--| | | | Identify the solid in the balanced equation. | | | | | | | | | A) $(NH_4)_2SO_4$ | | | | | | | | | B) $Pb(NO_3)_2$ | | | | | | | | | C) PbSO ₄ | | | | | | | | | D) NH_4NO_3 | | | | | | | | | E) There is no solid formed when the two solutions are mixed. | | | | | | | | 11. | 1. The factors that most commonly cause chemical reactions to occur are all the following executions to occur are all the following executions. | | | | | | | | | A) formation of a solid D) transfer of electrons | | | | | | | | | B) formation of a gas E) a decrease in temperature | | | | | | | | | C) formation of water | | | | | | | | 12. | List 4 observations that may be clues that a chemical reaction is taking place. | | | | | | | | 13. | 13. Complete and write the <u>balanced equation</u> for the following: An aqueous solution of magnesius chloride is added to an aqueous solution of silver nitrate. <u>State the reaction type.</u> | | | | | | | | 14. | Write the <u>balanced</u> equation and <u>state the reaction type</u> , for the following reaction: Aqueous solutions of copper(I I) nitrate and sodium hydroxide are mixed to form solid copper(II) hydroxide and aqueous sodium nitrate. | | | | | | | Use the | follo | owing to answer questions 15-20. | | | | | | | | | Use the following choices to classify each reaction given below (more than one choice may apply). | | | | | | | | | a. oxidation-reduction | | | | | | | | | b. acid-base | | | | | | | | | c. precipitation | | | | | | | | | d. double replacement | | | | | | | | | e. single replacement | | | | | | | | | f. synthesis
g. decomposition | | | | | | | | | h. combustion | | | | | | | | 15. | $HNO_3(aq) + NaOH(aq) \rightarrow H_2O(l) + NaNO_3(aq)$ | | | | | | | | 16. | $Zn(s) + 2HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$ | | | | | | | | 17 | $2Na(s) + H_2(g) \rightarrow 2NaH(s)$ | | | | | | | 18. | $2 \text{HgO}(s) \rightarrow 2 \text{Hg}$ | $(l) + O_2(g)$ | | | | | | | |---------|--|-----------------------------|---|--|--|----------------|--|--| | 19. | 19. $H_2SO_4(aq) + Ba(OH)_2(aq) \rightarrow 2H_2O(l) + BaSO_4(s)$ | | | | | | | | | 20. | $Ca(s) + H_2(g) \rightarrow$ | CaH ₂ (s) | | | | | | | |
21. | When the equation HF? A) 0 | on Si(s) + H B) 1 | $F(aq) \rightarrow SiF_4$ C) 2 | $(g) + H_2(g)$ is bal
D) 3 | anced, what is the co | pefficient for | | | |
22. | , | ing equation is | balanced using | , | e integers, what is th | ne number in | | | | | $Na_2S_2O_3 + I_2$ | | | | | | | | | | A) 1 | B) 2 | C) 3 | D) 4 | E) 6 | | | | |
23. | The reaction Aga
A) precipitation
B) acid-base
C) oxidation-red | | $Cl(aq) \rightarrow AgCl(aq)$ | b) + NaNO ₃ (aq) is a D) single-replac E) none of these | ement | _ reaction. | | | | 24. | Which of the following statements is not true of balancing a chemical equation? A) Subscripts of elements must be the same on each side of the equation. B) Coefficients are used to balance the atoms on both sides. C) The law of conservation of matter must be followed. D) Phases are often shown for each compound but are not critical to balancing an equation. E) All of the above statements (a-d) are true. | | | | | | | | |
25. | In a precipitation A) a gas | reaction, one B) wa | - | must be C) soluble | D) insolubl | e | | | |
26. | When the follows front of the subst | | _ | the smallest possibl | e integers, what is th | ne number in | | | | | $Pb(NO_3)_2 + K_2$
A) 5 | $CO_3 \rightarrow PbO$ B) 4 | CO ₃ + KNO₃ C) 3 | D) 2 | E) 1 | | | | |
27. | In what type of r A) precipitation B) acid-base C) oxidation | | er always a proc | luct? D) decomposition E) synthesis | on | | | | | 28. | | | | ne following: An acodium sulfate. Stat | queous solution of p
e the reaction type. | otassium | | | 29. Balance the equation and state the reaction type. $$MgCl_2 + K_3PO_4 \rightarrow Mg_3(PO_4)_2 + KCl$$ 30. Balance the equation and state the reaction type. $$Zn(s) + H_3PO_4(aq) \rightarrow Zn_3(PO_4)_2(s) + H_2(g)$$ - 31. Refer to the Conversion Tables in the back of the lab book. Use dimensional analysis, showing all of your calculations. How many liters are in 2.00 cubic feet? - 32. Write and balance the equation and state the reaction type for the reaction of calcium metal with oxygen gas. Note: You'll need to write the product(s). - 33. <u>Balance</u> the equation and state the reaction type. $C_6H_{14} + O_2 \rightarrow CO_2 + H_2O$ ## **Answer Key - Practice Test 3 102309** - C A D - 4. True - 5. False - 6. True - 7. False - 8. D - 9. A - 10. C - 11. E - 12A. light, color change, temperature change, precipitate, bubbles or fizzing 12B. 13. $MgCl_2 + 2 AgNO_3 \rightarrow 2 AgCl + Mg(NO_3)_2$ Double Replacement (or Precipitation) - 14. $Cu(NO_3)_2(aq) + 2NaOH(aq) \rightarrow Cu(OH)_2(s) + 2NaNO_3(aq)$ Double Replacement, Precipitation - 15. b, d - 16. a, e - 17. a; c - 18. a; d - 19. b, c, d - 20. a, f - 21. E - 22. B - 23. A - 24. A - 25. D - 26. D - 27. B - 28. $2 \text{ KCl}(aq) + \text{Na}_2 \text{SO}_4(aq) \rightarrow \text{K}_2 \text{SO}_4(aq) + 2 \text{ NaCl}(aq)$ Double Replacement 29. $3\text{MgCl}_2 + 2\text{K}_3\text{PO}_4 \rightarrow \text{Mg}_3(\text{PO}_4)_2 + 6\text{KCl}$ Double Replacement - 30. $3\operatorname{Zn}(s) + 2\operatorname{H}_3\operatorname{PO}_4(aq) \rightarrow \operatorname{Zn}_3(\operatorname{PO}_4)_2(s) + 3\operatorname{H}_2(g)$ single replacement, oxidation-reduction - 31A. 56.6 L 31B. 32. $2Ca(s) + O_2(g) \rightarrow 2CaO(s)$ synthesis, oxidation-reduction 33. $2C_6H_{14} + 19O_2 \rightarrow 12CO_2 + 14H_2O$ comubustion, oxidation-reduction