Name: \qquad
Date: \qquad

Stoichiometry Worksheet \#2

1. Given the following equation: $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2}--->8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$, show what the following molar ratios should be.
a. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{O}_{2}$
b. $\mathrm{O}_{2} / \mathrm{CO}_{2}$
c. $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{CO}_{2}$
e. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{H}_{2} \mathrm{O}$
2. Given the following equation: $2 \mathrm{KClO}_{3}-->2 \mathrm{KCl}+3 \mathrm{O}_{2}$
a. How many moles of O_{2} can be produced by letting 12.00 moles of KClO_{3} react?
3. Given the following equation: $2 \mathrm{~K}+\mathrm{Cl}_{2}--->2 \mathrm{KCl}$
a. How many grams of KCl is produced from 2.50 g of K and excess Cl_{2} ?

4. Given the following equation: $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}--->2 \mathrm{NaOH}$
a. How many grams of NaOH is produced from 1.20×10^{2} grams of $\mathrm{Na}_{2} \mathrm{O}$?
b How many grams of $\mathrm{Na}_{2} \mathrm{O}$ are required to produce 1.60×10^{2} grams of NaOH ?
5. Given the following equation: $8 \mathrm{Fe}+\mathrm{S}_{8}--->8 \mathrm{FeS}$
a. What mass of iron is needed to react with 16.0 grams of sulfur?
b. How many grams of FeS are produced?

Name: \qquad
Date: \qquad
6. Given the following equation: $2 \mathrm{NaClO}_{3}--->2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
a. 12.00 moles of NaClO_{3} will produce how many grams of O_{2} ?
b. How many grams of NaCl are produced when 80.0 grams of O_{2} are produced?
7. Given the following equation: $\mathrm{Cu}+2 \mathrm{AgNO}_{3}--->\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
a. How many moles of Cu are needed to react with 3.50 moles of AgNO_{3} ?
b. If 89.5 grams of Ag were produced, how many grams of Cu reacted?
8. Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). The reaction is: $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C}--->2 \mathrm{Fe}+3 \mathrm{CO}$
a. If 25.0 kilograms of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is used, how many kilograms of iron can be produced?
9. The average human requires 120.0 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ per day. The photosynthetic reaction is: $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}--->\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
a. How many grams of CO_{2} (in the photosynthesis reaction) are required for this amount of glucose?

This problem is slightly different from those above.
10. Given the reaction: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})--->4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

When 1.20 mole of ammonia reacts, the total number of moles of products formed is:
a. 1.20
b. 1.50
c. 1.80
d. 3.00
e. 12.0

