Name: _		
	Date:	

Stoichiometry Worksheet #2

- 1. Given the following equation: $2 C_4H_{10} + 13 O_2 ---> 8 CO_2 + 10 H_2O$, show what the following molar ratios should be.
 - a. C_4H_{10} / O_2
 - b. O_2 / CO_2
 - c. O₂ / H₂O
 - d. C₄H₁₀ / CO₂
 - e. C_4H_{10} / H_2O
- 2. Given the following equation: $2 \text{ KClO}_3 \longrightarrow 2 \text{ KCl} + 3 \text{ O}_2$
 - a. How many moles of O₂ can be produced by letting 12.00 moles of KClO₃ react?
- 3. Given the following equation: $2 K + Cl_2 \longrightarrow 2 KCl$
 - a. How many grams of KCl is produced from 2.50 g of K and excess Cl₂?
 - b. How many grams of KCl is produced from $1.00 \ g$ of Cl_2 and excess K ?
- 4. Given the following equation: Na₂O + H₂O ---> 2 NaOH
 - a. How many grams of NaOH is produced from 1.20×10^2 grams of Na₂O?
 - b How many grams of Na₂O are required to produce 1.60 x 10² grams of NaOH?
- 5. Given the following equation: $8 \text{ Fe} + S_8 ---> 8 \text{ FeS}$
 - a. What mass of iron is needed to react with 16.0 grams of sulfur?
 - b. How many grams of FeS are produced?

Name: _		
	Date:	

- 6. Given the following equation: 2 NaClO₃ ---> 2 NaCl + 3 O₂
 - a. 12.00 moles of NaClO₃ will produce how many grams of O₂?
 - b. How many grams of NaCl are produced when 80.0 grams of O2 are produced?
- 7. Given the following equation: $Cu + 2 \text{ AgNO}_3 ---> Cu(NO_3)_2 + 2 \text{ Ag}$
 - a. How many moles of Cu are needed to react with 3.50 moles of AgNO₃?
 - b. If 89.5 grams of Ag were produced, how many grams of Cu reacted?
- 8. Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). The reaction is: $Fe_2O_3 + 3C ---> 2Fe + 3CO$
 - a. If 25.0 kilograms of pure Fe₂O₃ is used, how many kilograms of iron can be produced?
- 9. The average human requires 120.0 grams of glucose ($C_6H_{12}O_6$) per day. The photosynthetic reaction is: $6 CO_2 + 6 H_2O ---> C_6H_{12}O_6 + 6 O_2$
 - a. How many grams of CO₂ (in the photosynthesis reaction) are required for this amount of glucose?

This problem is slightly different from those above.

10. Given the reaction: $4 \text{ NH}_3 (g) + 5 \text{ O}_2 (g) \longrightarrow 4 \text{ NO } (g) + 6 \text{ H}_2 \text{O} (l)$

When 1.20 mole of ammonia reacts, the total number of moles of products formed is:

a. 1.20

b. 1.50

c. 1.80

d. 3.00

e. 12.0