Nam	ne:	Date:	
Pra	ectice Test 5		
1.	mol of N_2 reacts with 3 mol of H_2 to for		
	A) True	B) False	
2.	molecules on each side of the equation.		
	A) True	B) False	
3.	The balanced equation $2Cu(s) + O_2(g) \rightarrow 2CuO(s)$ tells us that 5.0 mol of Cu		
	A) reacts with 5.0 mol of O ₂	D) cannot react with oxygen	
	B) produces 5.0 mol of CuOC) must react with 10 mol of O₂	E) produces 10.0 mol of CuO	
4.	For the reaction		
	$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O_2(g)$	O(g)	
	if 6.0 mol of CO ₂ are produced, how many moles of O ₂ were reacted?		
	A) 4.0 mol	D) 15.0 mol	
	B) 7.5 mol C) 9.0 mol	E) none of these	
5.	True or false? A mole ratio is used to convert the moles of a starting substance to the moles of a desired substance.		
	A) True	B) False	
6.	Refer to the following equation: $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$		
	How many moles of ammonia will be required to produce 13.7 mol of water?		
	A) 5.48 mol	D) 6.85 mol	
	B) 13.7 mol C) 9.13 mol	E) none of these	

7. Calculate the mass of water produced when 8.57 g of methane, CH₄, reacts with an excess of oxygen in the following **unbalanced** reaction.

$$CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

A) 9.62 g H₂O

D) 0.476 g H₂O

B) $3.09 \times 10^2 \text{ g H}_2\text{O}$

E) 1.07 g H₂O

- C) 19.2 g H₂O
- 8. Consider the reaction

$$2\text{Fe(s)} + 3\text{O}_2(\text{g}) \rightarrow \text{Fe}_2\text{O}_3(\text{s})$$

- If 12.7 g of iron(III) oxide (rust) is produced from a certain amount of iron, how many grams of oxygen are needed for this reaction?
- A) 3.82 g

D) 2.54 g

B) 7.63 g

E) none of these

- C) 1.70 g
- 9. For the reaction

$$2Cl_2(g) + 4NaOH(aq) \rightarrow 3NaCl(aq) + NaClO_2(aq) + 2H_2O(l)$$

how many grams of NaCl can be produced from 22.5 g of Cl₂ and excess NaOH?

A) 27.8 g NaCl

D) 9.27 g NaCl

B) 12.4 g NaCl

E) none of these

- C) 18.5 g NaCl
- 10. Sodium and water react according to the equation

$$2\text{Na(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$$

What number of moles of H₂ will be produced when 4.0 mol Na is added to 2.8 mol H₂O?

- A) 1.4 mol
- B) 5.6 mol
- C) 2.0 mol
- D) 2.8 mol
- E) 8.0 mol

11.	. How many moles of $SbCl_3$ is formed when 4.00 mol Sb are reacted with 4.70 mol Cl_2 according to the unbalanced equation	
	$Sb + Cl_2 \rightarrow SbCl_3$	
	A) 7.05 mol SbCl ₃	
	B) 4.70 mol SbCl ₃	
	C) 3.13 mol SbCl ₃	
	D) 4.00 mol SbCl ₃	
	E) Cannot be determined based on the information given.	

12. Determine the mass of CO₂ produced when 66.9 g of CaO is reacted with 50.0 g of C according to the unbalanced equation

$$\begin{array}{cccc} \text{CaO} + \text{C} \rightarrow \text{CaC}_2 + \text{CO}_2 \\ \text{A)} & 26.3 \text{ g CO}_2 \\ \text{B)} & 105 \text{ g CO}_2 \\ \text{C)} & 52.5 \text{ g CO}_2 \end{array}$$

13. In the reaction between CO and Fe_3O_4 , the theoretical yield in an experiment is calculated to be 47.2 g Fe. When a careless chemistry student carries out the experiment, the actual yield is 34.4 g Fe. Calculate the percentage yield.

A) 72.9% D) 36.4%
B) 27.1% E) none of these C) 48.6%

14. When NH₃ is prepared from 28 g N₂ and excess H₂, the theoretical yield of NH₃ is 34 g. When this reaction is carried out in a given experiment, only 23 g is produced. What is the percentage yield? (Ignore significant figures for this problem.)

A) 32% B) 45% C) 23% D) 34% E) 68%

Answer Key - Test 5 practice

- 1. True
- 2. False
- 3. B
- 4. C
- 5. True
- 6. C
- 7. C
- 8. B
- 9. A
- 10. A
- 11. C
- 12. A
- 13. A
- 13. A 14. E