Aluminum - Copper (II) Chloride Reaction Lab

Purpose: In this laboratory, you will explore the reaction between aluminum and copper (II) chloride. In addition, you will make both quantitative and qualitative observations about the reaction.

Hypothesis: What two products do you think will be produced by this reaction? Which do you think will be soluble, and which will be insoluble?

Materials / Equipment: beaker or test tube

thermometer stirring rod scoopula

copper (II) chloride crystals

aluminum foil

Safety Precautions:

Wear safety goggles at all times.

Be careful not to get any chemical in your eyes or mouth.

Wash your hands when finished.

Procedure:

- 1. Put about 25 mL of water into the beaker or test tube.
- 2. Record the temperature of the water.
- 3. Add a small amount of copper (II) chloride (about the size of two peas) to the water and stir.
- 4. Take the temperature of the water / copper (II) chloride solution and write down any qualitative observations that you can.
- 5. Place a piece of loosely-crumpled aluminum foil into the solution and let the mixture sit for at least three minutes. You should observe some definite changes. You may stir gently once or twice.
- 6. Take the temperature of the mixture and, again, write down any qualitative observations that you can.
- 7. Clean up your lab area according to your teacher's instructions. Leftover solution must be disposed of in the waste collection beaker.

Data:

Be sure to include all temperature readings and all qualitative observations in a neat data table.

Analysis Questions:

- 1. What products were produced. What evidence did you observe to support this?
- 2. Write the balanced equation for the reaction.
- 3. How would the following changes affect the reaction rate?
 - a. Using large crystals of copper (II) chloride
 - b. Using hot water
 - c. Using more copper (II) choride
 - d. Tightly crumpling the aluminum foil

Conclusion: Make sure you address the following questions, in addition to what you would normally include.

- 1. Does the equation you wrote agree with your hypothesis?
- 2. What type of reaction is this?
- 3. Was this an exothermic or endothermic reaction?